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Overview

Use the homogeneous realization of the basic representation of
�sl2C to compute certain tau functions for the Toda lattice
(Kasman ‘96).

Bergvelt obeserved that these tau functions satisfy the A∞
Q− system (see Kedem and Di Francesco papers as well as
Kirillov and Reshetikhin ‘90).

We are working to generalize Bergvelt’s idea by using the
homogeneous realization of the basic representation of �sl3C to
obtain new (more complicated) functions.

We are currently working to understand what sort of relations are
satisfied by these new tau functions.
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The �sl2C Case (Bergvelt)

We take the homogeneous realization of the basic representation
of �sl2C.

By a theorem of Frenkel and Kac, ‘80, this representation is
isomorphic to

⊕k∈ZT
k
vΛ0 ⊗ C[t1, t2, t3, · · · ]

where T =

�
z 0
0 z−1

�
and vΛ0 is the vacuum vector.
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Since this is an integrable representation, we can consider the
action of the loop group element,

g =

�
1 0

C (z) 1

�
on the vacuum vector, vΛ0 , where

C (z) =
∞�

i=0

ci

z i+1
where ci ∈ C.
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Since the basic representation is isomorphic to

⊕k∈ZT
k
vΛ0 ⊗ C[t1, t2, t3, · · · ],

g · vΛ0 =
�

k∈Z
τk(t1, t2, t3, · · · )T k

vΛ0 for some τk ∈ C[t1, t2, t3, · · · ].

We take these τk to be the definition of our tau functions.
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Using the fact that

g = exp

�
0 0

C (z) 0

�

and

�
0 0

C (z) 0

�
= Resw (C (w)

�

i∈Z

�
0 0
z i 0

�
w−i−1),

we can calculate the action of g , by calculating the action of the
current,

�

i∈Z

�
0 0
z i 0

�
w

−i−1,

on
⊕k∈ZT

k
vΛ0 ⊗ C[t1, t2, t3, · · · ]
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We then find that, for k ≥ 0,

τk(t) = det





ct0 ct1 · · · ctk−1
ct1 ct2 · · · ctk
...

... · · ·
...

ctk−1 ctk · · · ct2(k−1)





where cti =Resw (w iC (w) exp(
�

j>0

w
j
tj)).

Also notice that τk is the determinant of a Hankel matrix.
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The Desnanot-Jacobi Identity and Difference Relations

Since we are only concerned with our difference relations and not
concerned with dependence on the ti s, we may take

τk = det





c0 c1 · · · ck−1

c1 c2 · · · ck
...

... · · ·
...

ck−1 ck · · · c2(k−1)





Since this is a Hankel matrix, applying the Desnanot− Jacobi

Identity is particularly nice.
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The Desnanot-Jacobi Identity

Given a k × k matrix, M, let M j
i denote the matrix obtained by

deleting the ith row and jth column of M. For 1 ≤ i1 < i2 ≤ k and
1 ≤ j1 < j2 ≤ k , M j1,j2

i1,i2
denotes the matrix obtained from M by

deleting the i1, i2 rows and the j1, j2 rows.

We then have the “Desnanot− Jacobi Identity”:

detM detM1,k
1,k = detM1

1 detM
k
k − detMk

1 detM1
k
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In order to get our A∞ Q-system, we first need to expand our
definition of tau-functions to allow “shifted tau functions”...
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Expanding our definition of τ functions to include “shifted
τ -functions” amounts to working in the space,

⊕j ,k∈ZQ
j
T

k
vΛ0 ⊗ C[t1, t2, t3, · · · ], where Q =

�
z 0
0 1

�
.

These new tau functions are then the coefficients of the QaT kvΛ0s
in gQavΛ0s.

They are given by (−1)akdet





ca ca+1 · · · ca+k−1

ca+1 ca+2 · · · ca+k
...

... · · ·
...

ca+k−1 ca+k · · · ca+2(k−1)




.
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It is convenient to write

τnk = (−1)(n−k+1)k det





cn−k+1 cn−k+2 · · · cn

cn−k+2 cn−k+3 · · · cn+1
...

...
...

...
cn cn+1 · · · cn+k−1





Applying the Desnanot-Jacobi Identity, we have:

(τnk )
2 + τnk+1τ

n
k−1 = τn+1

k τn−1
k for all k ≥ 0 and n ∈ Z,

which are precisely the equations which define an A∞ Q− system

(see Kedem Di Francesco papers, Kirillov-Reshetikhin ‘90)
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Additionally, we have orthogonal polynomials:

pk(z) = det





c0 · · · ck−1 1
c1 · · · ck z

... · · ·
...

...
ck · · · c2k−1 zk




,

c(pm(z)pn(z)) = 0 if m �= n, where c(f (z)) =Resz(C (z)f (z)).

The orthogonality of these polynomials is implied by Hirota

Equations (If time permits, I will briefly mention these later. See

Kac-Raina ‘87), satisfied by our �sl2C τ -functions.

We’d like to find an analogous system of polynomials for our �sl3C
case.
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Generalizing the Above to the �sl3C Case

Take the homogeneous realization of the basic representation of

�sl3C, which is isomorphic (Frenkel, Kac, ‘80) to

⊕k,�∈ZT
k
1 T

�
2vΛ0 ⊗ C[t1, t2, t3, · · · ]

where T1 =




z 0 0
0 z−1 0
0 0 1



 and T2 =




1 0 0
0 z 0
0 0 z−1




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We now consider the action of a group element

g =




1 0 0

C (z) 1 0
D(z) E (z) 1



 on the vacuum vector, where

C (z) =
∞�

i=0

ci

z i+1
, D(z) =

∞�

i=0

di

z i+1
, and E (z) =

∞�

i=0

ei

z i+1
where

ci , di , ei ∈ C.
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As before, we have

g · vΛ0
=

�

k,�∈Z
τk,�(t1, t2, t3, · · · )Tk

1
T

�
2
vΛ0

for some τk,� ∈ C[t1, t2, t3, · · · ] and we take these τk,�s to be the

definition of our new tau functions.

We again ignore dependence on the ti s and focus instead on the
discrete evolution.
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These new functions are, in general, much more complicated than
before...
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A Few Examples

τk,0 = det





c0 c1 · · · ck−1

c1 c2 · · · ck
...

... · · ·
...

ck−1 ck · · · c2(k−1)




,

τ0,k = det





e0 e1 · · · ek−1

e1 e2 · · · ek
...

... · · ·
...

ek−1 ek · · · e2(k−1)




, τ1,1 = −d0,

τ1,2 = − det

�
e0 d0

e1 d1

�
, τ2,1 = det




1 0 c0

0 c0 c1

e0 d0 d1



,

τ2,2 = − det




1 0 c0

e0 d0 d1

e1 d1 d2



, τ1,3 = − det




e0 e1 d0

e1 e2 d1

e2 e3 d2




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τ3,2 = det





0 1 0 0 c0

1 0 0 c0 c1

0 0 c0 c1 c2

e0 e1 d0 d1 d2

e1 e2 d1 d2 d3




,

τ4,2 = det





0 0 1 0 0 0 c0

0 1 0 0 0 c0 c1

1 0 0 0 c0 c1 c2

0 0 0 c0 c1 c2 c3

0 0 0 c1 c2 c3 c4

e0 e1 e2 d0 d1 d2 d3

e1 e2 e3 d1 d2 d3 d4




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We’re working to understand what sort of relations are satisfied by
these new tau functions.

It’s not at all apparent how one would use the Desnanot-Jacobi
Identity to find these relations, so we need another approach.

We’ll need to use Hirota Equations, which are implied by Plücker

Relations. We are currently working to use these Hirota Equations
to try to find new and interesting relations satisfied by our �sl3C
τ -functions.

Darlayne Addabbo, Joint work with M. Bergvelt, UIUC Representation Theory, Q-systems, and Generalizations



Plücker Relations in the Finite Dimensional Case:

We have an action of G := GLk(C) on the finite wedge space, ΛnCk,
where n ≤ k :

g · (w1 ∧ · · · ∧wn) = gw1 ∧ · · · ∧ gwn for all g ∈ G and
w = w1 ∧ · · ·wn ∈ Λ

nCk

We define an operator, S : ΛnCk ⊗ Λ
nCk → Λ

n+1Ck ⊗ Λ
n−1C by

S(v ⊗w) =
k�

i=1

ei ∧ v ⊗ ei�w, where the ei are the standard basis

vectors of Ck, and ei∧ and ei� are the wedging and contracting
operators, respectively.

S commutes with the action of G and
S(e1 ∧ · · · ∧ en ⊗ e1 ∧ · · · ∧ en) = 0, so
S(g · (e1 ∧ · · · ∧ en)⊗ g · (e1 ∧ · · · ∧ en)) = 0 for all g ∈ G,

This gives us relations, called “Plücker relations”, for elements in the

orbit, G · e1 ∧ · · · ∧ en.

Darlayne Addabbo, Joint work with M. Bergvelt, UIUC Representation Theory, Q-systems, and Generalizations



An Infinite Dimensional Analogue of the Above

If we consider the basic representation of �sl2C on the two-component
fermionic Fock space, we have an infinite dimensional analogue of the
previous slide.

We can define an operator S , that commutes with the action of �SL2C
and is such that S(vΛ0 ⊗ vΛ0) = 0.

In particular, this S commutes with the action of our group element,

g =

�
1 0

C (z) 1

�
, so we get new Plücker Relations relations from

S(g · vΛ0 ⊗ g · vΛ0) = 0.

The Hirota Equations are then obtained from these Plücker Relations

by defining a bilinear product on the two component Fermionic Fock

space and using the fact that the bilinear product between

S(g · vΛ0 ⊗ g · vΛ0) = 0 and anything else is 0.
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We are currently in the process of writing out Hirota Equations

for the �sl3C case, and hope that these will give us new and
interesting relations satisfied by our tau functions.

Since some of our new tau functions are determinants of Hankel
matrices, certain subsets of our collection of tau functions give us
A∞ Q-systems as before.

We’d like to find some unifying set of relations between our tau
functions, and so expect to get some sort of “generalized”
Q-system.

Since Q-systems appear in many places in representation theory
and in combinatorics, once we understand what our new
“generalized” Q-system looks like, it would be exciting to then
find other situations in which it appears.
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Thank you.

Happy birthday to Professor Lepowsky and
Professor Wilson!
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For Q-systems, see Di Francesco and Kedem papers.

Thanks to Maarten Bergvelt and Rinat Kedem for their helpful
comments and suggestions.
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